Selected papers
[1] Peng Wang, Fengqi Si, Yue Cao, Zhuang Shao, Shaojun Ren. Prediction of superheated steam temperature for thermal power plants using a novel integrated method based on the hybrid model and attention mechanism[J]. Applied Thermal Engineering,2022,203:117899. (SCI收录号:000742709100005) [2] Wei Jin, Fengqi Si,Yue Cao, Huan Ma, Ya ou Wang. Numerical optimization of separated overfire air distribution for air staged combustion in a 1000 MW coal-fired boiler considering the corrosion hazard to water walls[J]. Fuel, 2022, 309:122022. (SCI收录号:000706524200007)
[3] Haiquan Yu, Jianxin Zhou, Fengqi Si, Lars O. Nord. Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants[J]. Energy, 2022, 244:122567.
[4] Yue Cao, Peiyu Li, Zongliang Qiao, Shaojun Ren, Fengqi Si. A concept of a supercritical CO2 Brayton and organic Rankine combined cycle for solar energy utilization with typical geothermal as auxiliary heat source: Thermodynamic analysis and optimization[J]. Energy Reports, 2022, 8:322-333.
[5] Wei Fan, Qinqin Zhu, Shaojun Ren, Liang Zhang, Fengqi Si. Robust probabilistic predictable feature analysis and its application for dynamic process monitoring[J]. Journal of Process Control, 2022, 112:21-35.
[6] Cao Y , Zhan J, Zhou JX, Si FQ. Design Optimization of Plate-Fin Heat Exchanger in a Gas Turbine and Supercritical Carbon Dioxide Combined Cycle with Thermal Oil Loop[J]. Applied Sciences-Basel, 2022, 12(1). (SCI收录号:000752543100001)
[7] Fan W, Zhu QQ, Ren SJ, Zhang L, Si FQ. Dynamic Probabilistic Predictable Feature Analysis for Multivariate Temporal Process Monitoring[J]. IEEE Transactions on Control Systems Technology, 2022, 112:21-35. (SCI收录号:000773270800001)
[8] Dong YS, Cao Y, Si FQ, Wang P, Zhou JX. Co-simulating fouling, erosion of gas-particle flow and morphologies predictions around circular tube via parallel CFD DEM modeling[J].Fuel, 2021,294:120464. (SCI收录号:000640910700005)
[9] Ma H,Cai L, Si FQ, Wang JS. Exploratory research on annular-arranged moist media to improve cooling capacity of natural draft dry cooling tower and thermo-flow characteristics of its radiators[J]. International Journal of Heat and Mass Transfer, 2021, 172:121123. (SCI收录号:000641142400015)
[10] Jin W, Geng CM, Wang YO, Ma H, Dong YS, Si FQ. Combined effects of yaw and tilt angles of separated overfire air on the combustion characteristics in a 1,000 MW coal-fired boiler: A numerical study[J]. Korean Journal of Chemical Engineering, 2021, 38(4):771-787. (SCI收录号:000637505700010)
[11] Gu H, Cui XB, Zhu HX, Si FQ, Kong Y. Multi-objective optimization analysis on gas-steam combined cycle system with exergy theory[J]. Journal of Cleaner Production, 2021, 278: 123939. (SCI收录号:000592390300008)
[12] Dong YS, Si FQ, Cao Y, Jin W, Ren SJ. A new mechanistic model for abrasive erosion using discrete element method[J]. Powder Technology, 2021, 380:486-496. (SCI收录号:000609422300004)
[13] Wang P, Si FQ, Fan W, Shao Z, Ren SJ. Data Enhancement for Data-Driven Modeling in Power Plants Based on a Conditional Variational- Adversarial Generative Network[J]. Industrial &
Engineering Chemistry Research, 2021, 60(24): 8829-8843. (SCI收录号:000667984100022) [14] Zhuang Shao,Fengqi Si, Huaijiang Wu, XiaozhongTong. An agile and intelligent dynamic economic emission dispatcher based on multi-objective proximal policy optimization[J]. Applied Soft Computing, 2020, 102:107047.
[15] Yu HQ, Nord LO, Yu C, Zhou JX, Si FQ. An improved combined heat and power economic dispatch model for natural gas combined cycle power plants[J]. Applied Thermal Engineering, 2020, 181:115939. (SCI收录号:000592635100049)
[16] Shao Z, Si FQ, Kudenko D, Wang P, Tong XZ. Predictive scheduling of wet flue gas desulfurization system based on reinforcement learning[J]. Computers & Chemical Engineering, 2020, 141:107000. (SCI收录号:000571095800012)
[17] Dong YS, Si FQ, Jin W, Cao Y, Ren SJ. A new soft-particle DEM model of micro-particle impact integrated adhesive, elastoplastic and microslip behaviors[J]. Advanced Powder Technology, 2020, 31:3960-3973. (SCI收录号:000579717400026)
[18] Ma H, Si FQ, Wang JS. Study on the effects of apex angle of the delta-type radiator on thermo-flow performance of natural draft dry cooling tower[J]. International Journal of Heat and Mass Transfer, 2020, 148:119002. (SCI收录号:000509626100052)
[19] Ma H, Si FQ, Wang JS. Internal flow reconstruction strategies to improve both thermo-flow performance and flue gas diffusion characteristic of the integrated dry-cooling tower and stack system[J]. Applied Thermal Engineering, 2020, 166(5):114675. (SCI收录号:000512220900065) [20] Tang YF, Qiao ZL, Cao Y, Si FQ, Romero CE, Rubio-Maya C. Numerical analysis of separation performance of an axial-flow cyclone for supercritical CO2-water separation in CO2 plume geothermal systems[J]. Separation and Purification Technology, 2020, 248:116999. (SCI收录号:000538827600021)
[21] Qiao ZL, Cao Y, Yin YM, Zhao LL, Si FQ. Solvation structure of supercritical CO2 and brine mixture for CO2 plume geothermal applications: A molecular dynamics study[J]. Journal of Supercritical Fluids, 2020, 159:104783. (SCI收录号:000521516100004)
[22] Qiao ZL, Cao Y, Tang YF, Si FQ. Numerical analysis of membrane-absorption separation for supercritical carbon dioxide and water mixture of plume geothermal power generation systems[J]. Energy Conversion and Management, 2020, 208-112609. (SCI收录号:000524305200024)
[23] Fan W, Si FQ, Ren SJ, Yu C, Cui YF,Wang P. Integration of continuous restricted Boltzmann machine and SVR in NOx emissions prediction of a tangential firing boiler[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 195:103870. (SCI收录号:000503086400002)
[24]Ma H, Si F, Zhu K, Wang J. Quantitative research of spray cooling effects on thermo-flow performance of the large-scale dry cooling tower with an integrated numerical model[J]. International Journal of Heat and Mass Transfer, 2019,141: 799-817. (SCI收录号:000480665000068)
[25]Qiao Z, Tang Y, et al. Design and performance analysis of a supercritical CO2 (sCO2)-water separator for power generation systems using hot sCO2 from geothermal reservoirs[J]. Geothermics, 2019, 81:123-132. (SCI收录号:000472689800010)
[26]Qiao Z, Wang X, Gu H, Tang Y, Si F, et al. An investigation on data mining and operating optimization for wet flue gas desulfurization systems[J]. Fuel, 2019.
[27]Qiao Z, Tang Y, et al. Performance analysis and optimization design of an axial-flow vane separator for supercritical CO2 (sCO2)-water mixtures from geothermal reservoirs[J]. International Journal of Energy Research, 2019, 43(6): 2327-2342.(SCI收录号:000465092800024)
[28]Ma H, Si F, Zhu K, et al. Utilization of partial through-flow tower shell to cope with the excess cooling capacity of dry cooling tower in extremely cold days with crosswind[J]. International Journal of Thermal Sciences, 2019, 136:70-85. (SCI收录号:000467003100008)
[29]Yu H, Zhou J, Ma H, et al. Performance analysis and optimization of a NGCC-CHP plant with low pressure economizer partial recirculation system[J]. Energy Conversion and Management, 2019, 180: 524-532. (SCI收录号:000457666700040)
[30]Zhou J, Ma H, Si F, et al. To broaden safe operation range of the indirect dry cooling system with internal annular windbreak cloth in extremely cold days[J]. Applied Thermal Engineering, 2019, 152:420-429. (SCI收录号:000465058700038)
[31]Yu C, Xiong W, Ma H, Zhou J, Si F, et al. Numerical investigation of combustion optimization in a tangential firing boiler considering steam tube overheating[J]. Applied Thermal Engineering, 2019, 154:87-101. (SCI收录号:000469892000009)
[32]Ma H, Si F, Zhu K, et al. The adoption of windbreak wall partially rotating to improve thermo-flow performance of natural draft dry cooling tower under crosswind[J]. International Journal of Thermal Sciences, 2018, 134: 66-88. (SCI收录号:000447572700006)
[33]Dong Y, Qiao Z, Si F, et al. A Novel Method for the Prediction of Erosion Evolution Process Based on Dynamic Mesh and Its Applications[J]. Catalysts, 2018, 8(10):432. (SCI收录号:000448543300028)
[34]Gu H, Zhu H, Cui Y, et al. Optimized scheme in coal-fired boiler combustion based on information entropy and modified K-prototypes algorithm[J]. Results in Physics, 2018, 9: 1262-1274. (SCI收录号:000435611100168)
[35]Gu H, Cui Y, Zhu H, et al. A new approach for clustering in desulfurization system based on modified framework for gypsum slurry quality monitoring[J]. Energy, 2018, 148: 789-801. (SCI收录号:000429764000059)
[36]Ren S, Si F, Zhou J, et al. A new reconstruction-based auto-associative neural network for fault diagnosis in nonlinear systems[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 172: 118-128. (SCI收录号:000426026400013)
[37]Gu H, Ren S, Si F, et al. Evolved FCM framework for working condition classification in furnace system[J]. Soft Computing, 2017, 21(21): 6317-6329. (SCI收录号:000412458000008)
[38]Yu C, Si F, Ren S, et al. Experimental and numerical predictions of ash particle erosion in SCR monolithic catalysts for coal-fired utility boilers[J]. Korean Journal of Chemical Engineering, 2017, 34(5): 1563-1575. (SCI收录号:000400661600033)
[39]Ren S, Si F, Gu H. Multiple Sensor Validation for Natural Gas Combined Cycle Power Plants Based on Robust Input Training Neural Networks[J]. Journal of Chemical Engineering of Japan, 2017, 50(3): 186-194. (SCI收录号:000398125000004)
[40]Ma H, Si F, Kong Y, et al. Wind-break walls with optimized setting angles for natural draft dry cooling tower with vertical radiators[J]. Applied Thermal Engineering, 2017, 112: 326-339. (SCI收录号:000394831500033)
[41]Gu H, Ren S J, Si F Q, et al. Evolved clustering analysis of 300 MW boiler furnace pressure sequence based on entropy characterization[J]. Science China Technological Sciences, 2016, 59(4): 647-656. (SCI收录号:000373853400015)
[42]Ma H, Si F, Kong Y, et al. A new theoretical method for predicating the part-load performance of natural draft dry cooling towers[J]. Applied Thermal Engineering, 2015, 91: 1106-1115. (SCI收录号:000365053200111)
[43]Ronquillo-Lomeli G, Romero C E, Yao Z, et al. On-line flame signal time series analysis for oil-fired burner optimization[J]. Fuel, 2015, 158: 416-423. (SCI收录号:000357670100048)
[44]Ma H, Si F, Li L, et al. Effects of ambient temperature and crosswind on thermo-flow performance of the tower under energy balance of the indirect dry cooling system[J]. Applied Thermal Engineering, 2015, 78: 90-100. (SCI收录号:000350096700010)
[45]Pan Y, Si F, Xu Z, et al. DEM simulation and fractal analysis of particulate fouling on coal-fired utility boilers' heating surfaces[J]. Powder technology, 2012, 231: 70-76. (SCI收录号:000309370800009)
[46]Liang H, Xu Z, Si F. Economic analysis of amine based carbon dioxide capture system with bi-pressure stripper in supercritical coal-fired power plant[J]. International journal of greenhouse gas control, 2011, 5(4): 702-709. (SCI收录号:000294700900012)
[47]Pan Y, Si F, Xu Z, et al. An integrated theoretical fouling model for convective heating surfaces in coal-fired boilers[J]. Powder technology, 2011, 210(2): 150-156. (SCI收录号:000291287700009)
[48]Si F, Romero C E, Yao Z, et al. A new approach for function approximation in boiler combustion optimization based on modified structural AOSVR[J]. Expert Systems with Applications, 2009, 36(4): 8691-8704. (SCI收录号:000264528600153)
[49]Si F, Romero C E, Yao Z, et al. Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms[J]. Fuel, 2009, 88(5): 806-816. (SCI收录号:000264087300006)
[50]Si F, Romero C E, Yao Z, et al. Inferential sensor for on-line monitoring of ammonium bisulfate formation temperature in coal-fired power plants[J]. Fuel Processing Technology, 2009, 90(1): 56-66. (SCI收录号:000262206800006)
[51] 董云山,司风琪,金炜. 考虑温度效应的灰颗粒碰撞模型及沉积行为预测[J].中国电机工程学报, 2021, 41(21):7370-7377. (EI: 20214811226752)
[52]喻聪,司风琪,熊尾,周建新,江晓明. 电站锅炉低氮燃烧与高温受热面换热的联合模拟及分析[J]. 中国电机工程学报,2019,39(13):3842-3850.(EI: 20193607395962)
[53]喻聪,司风琪,董云山,江晓明.燃煤电站SCR系统气固流动与催化剂磨损的混合数值模拟与优化[J].4008云顶集团学报(自然科学版),2019,49(01):133-140.(EI:20191506748463)
[54]雷丽君,司风琪,邵壮,白德龙.表面式三段给水加热器简化传热模型[J].中国电机工程学报,2019,39(01):204-211+334.(EI: 20191606801346)
[55]乔宗良,汤有飞,张蕾,董云山,司风琪.超临界CO_2-水分离器性能数值模拟[J].4008云顶集团学报(自然科学版),2018,48(05):781-788.(EI:20184706122053)
[56]李萍,王鹏,周建新,王晓东,司风琪.基于自适应模型的热电联产机组循环水系统运行优化[J].中国电机工程学报,2018,38(18):5500-5509.(EI:20191006611544)
[57]张贝,马欢,司风琪,白德龙,解冠宇.计及集群效应的直接空冷机组经济背压研究[J].中国电机工程学报,2018,38(19):5779-5786+5934.(EI:20184706088163)
[58]周卫庆,司风琪,徐治皋,黄葆华,仇晓智.基于KPCA残差方向梯度的故障检测方法及应用[J].仪器仪表学报,2017,38(10):2518-2524.(EI:20175004519914)
[59]马欢,司风琪,李岚,闫文生,祝康平.间接空冷塔部分冷却扇段关闭热力特性的数值研究[J].中国电机工程学报,2015,35(18):4682-4689.(EI:20154401462364)
[60]邵壮,司风琪,郭俊山,徐治皋,阎文生.静叶可调汽动引风机运行特性与性能优化[J].4008云顶集团学报(自然科学版),2015,45(04):707-713.(EI:20153201119763)
[61]顾慧,乔宗良,司风琪,徐治皋.一种基于EKFCM算法的电站脱硫系统目标工况库的建立方法[J].中国电机工程学报,2015,35(15):3859-3864.(EI:20153601250676)
[62]马欢,司风琪,李岚,祝康平,阎文生.间接空冷系统变工况快速计算模型[J].4008云顶集团学报(自然科学版),2015,45(01):79-84.(EI:20151000594379)
[63]周建新,邵壮,李崇,司风琪,徐治皋.基于Aspen平台的Oxy-CFB燃烧侧动态特性模拟[J].4008云顶集团学报(自然科学版),2014,44(06):1187-1193.(EI:20145300387673)
[64]马欢,司风琪,祝康平,阎文生.间接空冷机组变工况运行特性的数值研究[J].华中科技大学学报(自然科学版),2014,42(10):98-103.
[65]乔宗良,张蕾,周建新,司风琪,徐治皋.一种改进的CPSO-LSSVM软测量模型及其应用[J].仪器仪表学报,2014,35(01):234-240.(EI:20141017420164)
[66]任少君,司风琪,李欢欢,徐治皋.基于混合型鲁棒输入训练神经网络的非线性数据校正方法及其应用[J].4008云顶集团学报(自然科学版),2013,43(02):322-327.(EI: 20131916321912)
[67]乔宗良,周建新,周卫庆,司风琪,徐治皋.基于预数值计算的除雾器叶片结构优化设计[J].4008云顶集团学报(自然科学版),2013,43(01):76-82.(EI:20131916321869)
[68]顾慧,郭振宇,刘伟,司风琪,徐治皋.基于禁忌粒子群算法的热电联产负荷经济分配[J].4008云顶集团学报(自然科学版),2013,43(01):83-87.(EI:20131916321870)
[69]周卫庆,乔宗良,周建新,司风琪,徐治皋.一种热工过程数据协调与显著误差检测同步处理方法[J].中国电机工程学报,2012,32(35):115-121.(EI:20130315910059)
[70]任少君,司风琪,徐治皋.基于滑动样本熵的汽轮机热耗率不确定度分析[J].4008云顶集团学报(自然科学版),2012,42(S2):287-291.(EI:20132216372264)
[71]刘伟,司风琪,徐治皋.基于燃烧特征量和模糊C均值聚类的燃烧诊断[J].4008云顶集团学报(自然科学版),2012,42(S2):326-330.(EI:20132216372271)
[72]周建新,吴盈,司风琪,徐治皋.基于非线性块式递推偏最小二乘法的电站热力过程动态数据检验[J].中国电机工程学报,2012,32(29):110-115+4.(EI:20124815724441)
[73]李欢欢,司风琪,徐治皋.一种基于鲁棒自联想神经网络的传感器故障诊断方法[J].中国电机工程学报,2012,32(14):116-121.(EI:20122715200303)
[74]司风琪,顾慧,叶亚兰,汪军,徐治皋.基于混沌粒子群算法的火电厂厂级负荷在线优化分配[J].中国电机工程学报,2011,31(26):103-109.(EI:20114214431863)
[75]司风琪,李欢欢,徐治皋.基于鲁棒输入训练神经网络的非线性多传感器故障诊断方法及其应用[J].4008云顶集团学报(自然科学版),2011,41(03):574-578.(EI:20112614102964)
[76]周卫庆,司风琪,乔宗良,周建新,徐治皋.基于稳健估计的迭代型支持向量机及其在电站数据检验中的应用[J].中国电机工程学报,2011,31(11):113-118.(EI:20112013990525)
[77]吴盈,司风琪,徐治皋.基于样条变换偏鲁棒M–回归的电站热力过程数据检验[J].中国电机工程学报,2011,31(08):114-118.(EI:20111713935872)
[78]邱凤翔,郭振宇,徐治皋,司风琪.模糊概率符号有向图单元模型及电站高加系统故障诊断[J].中国电机工程学报,2011,31(02):104-110.(EI:20110913712498)
[79]潘亚娣,司风琪,徐治皋.电站锅炉受热面灰污剥离模型[J].中国电机工程学报,2010,30(11):33-37.(EI:20102112958240)
[80]潘亚娣,司风琪,徐治皋.电站锅炉受热面灰污沉积模型[J].中国电机工程学报,2010,30(08):63-67.(EI:20101812907119)
[81]周卫庆,乔宗良,司风琪,徐治皋.电站多目标负荷优化分配与决策指导[J].中国电机工程学报,2010,30(02):29-34.(EI:20100912741015)
[82]司风琪,周建新,仇晓智,徐治皋.基于APCA的电站热力过程故障传感器自适应检测方法[J].4008云顶集团学报(自然科学版),2009,39(02):282-286.(EI:20091812064358)
[83]邱凤翔,司风琪,徐治皋.电站关联规则的主元分析挖掘方法及传感器故障检测[J].中国电机工程学报,2009,29(05):97-102.(EI:20090911932678)
[84]周建新,司风琪,仇晓智,陈晨,徐治皋.基于SVR和GA的锅炉运行氧量基准值的优化确定[J].4008云顶集团学报(自然科学版),2008,38(06):1061-1066.(EI:20090111830173)
[85]司风琪,周建新,仇晓智,徐治皋.独立成分分析方法在电站热力过程数据检验中的应用[J].中国电机工程学报,2008(26):77-81.(EI:20084211646960)
[86]王雷,徐治皋,司风琪.基于支持向量回归的凝汽器清洁系数时间序列预测[J].中国电机工程学报,2007(14):62-66.(EI:20072610674294)
[87]王洪跃,毕小龙,司风琪,徐治皋.求解回转式空气预热器传热模型的解析-数值法[J].中国电机工程学报,2006(11):51-55.(EI:20063210056028)
[88]司风琪,洪军,徐治皋.基于改进Elman网络的动态系统测量数据检验方法[J].4008云顶集团学报(自然科学版),2005(01):50-54.(EI:2005149025252)
[89]司风琪,洪军,徐治皋.基于向量投影的数据检验PCA方法[J].中国电机工程学报,2002(10):158-161.
[90]司风琪,徐治皋.基于自联想神经网络的测量数据自校正检验方法[J].中国电机工程学报,2002(06):153-156.
[91]司风琪,马宝萍,徐治皋.热力系统性能监测中的数据调和及不良数据检测[J].4008云顶集团学报(自然科学版),2000(03):65-69.
[92]Shao Z, Si F, Xu Z. Modelling of thermal power unit target value based on hierarchical regression[C]. 2018 3rd International Conference on Insulating Materials, Material Application and Electrical Engineering - Power Engineering and Renewable Energy. September 15, 2018, Melbourne, VIC, Australia. (EI:20191306696873)
[93]Yu C, Si F, Xiong W. Multiple Scales Modelling of Chemistry and Mass Transfer in a SCR Process for Plate-Type Monolithic Catalysts[C]. 2018 International Conference on Manufacturing Technology, Materials and Chemical Engineering, MTMCE 2018, June 22, 2018. Zhuhai, China.(EI:20183505759910)
[94]Ma H, Si F, Li X, et al. Effects of pressure loss coefficients of heat exchanger on thermal performance of the dry cooling tower[J]. Energy Procedia, 2017, 136: 169-175.
[95]Yu C, Zhang B, Fan W, et al. 1D kinetic analysis and 3D multi-channel modeling of plate-type monolithic catalysts for a Selective Catalytic Reduction process[J]. Energy Procedia, 2017, 136: 182-187.
[96]Qiao Z, Si F, Zhou J, et al. Monitoring method of slurry quality in wet flue gas desulfurization system based on fuzzy C-means clustering[C]//2016 3rd International Conference on Systems and Informatics (ICSAI). IEEE, 2016: 166-170.
[97]Zhou J, Shao Z, Si F, et al. Dynamic tests and results in an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle[J]. Energy & Fuels, 2014, 28(12): 7616-7620. (SCI收录号:000346759800036)
[98]Zhang L, Ye Y L, Si F Q. Optimization of Condenser Vacuum Based on Neural Network and SA-BBO[C]//Advanced Materials Research. Trans Tech Publications, 2014, 860: 676-679.
[99]Zhao Y, Si F Q, Xu Z G. An Independent Component Analysis Based on Sliding Window Statistics and its Application to Power Plant Equipment State Monitoring[C]//Advanced Materials Research. Trans Tech Publications, 2014, 860: 1801-1806.
[100]Qiao Z L, Zhang L, Si F Q, et al. Multi-Objective Optimum Design for Wave-Plate Demister Based on NSGA-ΙΙ Algorithm[C]//Advanced Materials Research. Trans Tech Publications, 2014, 864: 1163-1167.
[101]Zhou J, Ji Y, Qiao Z, et al. Nitrogen oxide emission modeling for boiler combustion using accurate online support vector regression[C]//2013 10th international conference on fuzzy systems and knowledge discovery (fskd). IEEE, 2013: 989-993.
[102]Qiao Z, Zhou J, Si F, et al. Fault diagnosis of slurry pH data base on autoregressive integrated moving average and least squares support vector machines[C]//2013 Ninth International Conference on Natural Computation (ICNC). IEEE, 2013: 141-145.
[103]Zhu Y, Li Q, Feng Y, et al. Hierarchical economic load dispatch based on chaotic-particle swarm optimization[C]//2013 Ninth International Conference on Natural Computation (ICNC). IEEE, 2013: 517-521.
[104]Zhang L, Xu Z, Si F. GCMDDBSCAN: Multi-density DBSCAN Based on Grid and Contribution[C]//2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing. IEEE, 2013: 502-507.
[105]Zhang L, Xu Z, Si F. CGDBSCAN: DBSCAN Algorithm Based on Contribution and Grid[C]//2013 Sixth International Symposium on Computational Intelligence and Design. IEEE, 2013, 2: 368-371.
[106]Gu H, Ye Y, Guo Z, et al. Optimization of the Initial Steam Pressure for Supercritical Unit Based on ANN and PSO Algorithms[C]//2012 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2012: 1-5.
[107]Zhou W, Si F, Xu Z, et al. An investigation on system anomaly source diagnosis using KPCA-FPSDG[C]//2012 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2012: 1-4.
[108]Schuster E, Romero C, Yao Z, et al. Integrated real-time optimization of boiler and post-combustion system in coal-based power plants via extremum seeking[C]//2010 IEEE International Conference on Control Applications. IEEE, 2010: 2184-2189.
[109]Qiu X Z, Xu Z G, Zhang L M, et al. Nonlinear predictive control on the load system of a thermal power unit based on AOSVR and SAPSO[C]//2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009: 1-4.
[110]Xiaozhi Q, Zhigao X, Linmeng Z, et al. Nonlinear predictive control on the load system of a thermal power unit based on EMRAN and SAPSO[C]//2009 International Conference on Sustainable Power Generation and Supply. IEEE, 2009: 1-4.
[111]Qiu X, Zhang L, Zhou J, et al. Research and Application of Predictive Control Based on EMRAN in Superheated Steam Temperature Control System[C]//2009 International Conference on Advanced Computer Control. IEEE, 2009: 742-746.
|